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SUMMARY Postcopy live migration is a promising alternative of vir-
tual machine (VM) migration, which transfers memory pages after switch-
ing the execution host of a VM. It allows a shorter and more deterministic
migration time than precopy migration. There is, however, a possibility that
postcopy migration would degrade VM performance just after switching
the execution host. In this paper, we propose a performance improvement
technique of postcopy migration, extending the para-virtualized page fault
mechanism of a virtual machine monitor. When the guest operating system
accesses a not-yet-transferred memory page, our proposed mechanism al-
lows the guest kernel to defer the execution of the current process until the
page data is transferred. In parallel with the page transfer, the guest kernel
can yield VCPU to other active processes. We implemented the proposed
technique in our postcopy migration mechanism for Qemu/KVM. Through
experiments, we confirmed that our technique successfully alleviated per-
formance degradation of postcopy migration for web server and database
benchmarks.
key words: virtual machine, live migration, page fault, postcopy migration

1. Introduction

Live migration of a virtual machine is a key technology in
cloud computing infrastructure. It allows relocating a VM
to another physical machine without stopping the VM. In
data centers, live migration enables dynamic load balancing
and flexible server maintenance.

As far as we know, widely-used virtual machine mon-
itors implement so-called precopy migration [1]. All the
memory pages of the VM are transferred to the destina-
tion PM, before the execution of the VM is suspended at the
source PM and resumed at the destination. In this memory
transfer phase, the guest operating system of the VM is still
running at the source PM, updating memory pages of the
VM. The VMM needs to transfer updated memory pages re-
peatedly, until the size of remaining memory pages becomes
sufficiently small thereby minimizing downtime upon the
switch of the execution host. It is well known that this be-
havior sometimes results in a long and non-deterministic mi-
gration time, especially in actively-running VMs being up-
dating memory intensively

Thus, postcopy migration is considered promising for
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remedying the drawback of the precopy mechanism. Mem-
ory pages are transferred after the execution host is switched
to destination. The guest operating system keeps run-
ning even before the memory transfer completes. A VMM
promptly resolves the page faults caused by the VM access-
ing not-yet-transferred memory pages. Because postcopy
migration does not involve iterative memory transfer, its mi-
gration time is deterministic and mostly shorter than that of
precopy migration.

We developed a postcopy live migration mechanism for
Qemu/KVM, and applied it to VM packing systems dynam-
ically adjusting the locations of VMs in response to ever-
changing resource requirement. Experiments showed that
postcopy migration can contribute to achieving a higher de-
gree of performance assurance and energy save than pre-
copy migration [2]. The production-level code of the post-
copy migration (Yabusame [3]) is publicly available under
an open source license, which is intended to be merged to
the mainline of Qemu/KVM.

The challenge of the development is to reduce the pos-
sibility of performance degradation that is sometimes ob-
served just after the execution host of a VM is switched.
Before a postcopy migration completes, there is a possibil-
ity that the VM may temporally pause in a very short pe-
riod of time due to miss hit to memory pages. When the
VM accesses a not-yet-transferred memory page, a hyper-
visor temporally stops the VM, transfers the content of the
page as soon as possible, and then restart the VM. In order
to reduce miss hit, the prototype of our postcopy migration
parallelizes migration data transfer; an on-demand transfer
stream copies missed memory pages in a real-time basis, and
a background one copies the rest of memory pages in bulk.
The hypervisor analyzes memory offsets of page faults and
begins the background transfer with hot memory pages be-
ing frequently accessed now. Although this technique con-
tributes to alleviating performance degradation, we consider
that there is room for further improvement minimizing per-
formance overhead of postcopy migration.

In this paper, we propose an advanced technique of
postcopy migration, which ameliorates performance over-
head by means of pseudo-virtualization of page faults. Even
when a migrating VM miss-hits a memory page, the pro-
posed technique allows the guest operating system to keep
running without temporary pause. It suspends only the pro-
cess or the thread on the guest operating system, which ac-
cessed the not-yet-transferred memory page, and keeps as-
signing CPU time among other native threads on it. This
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Fig. 1 Overview of postcopy live migration for Qemu/KVM (Yabusame)

mechanism is intended to improve the throughput of multi-
threaded or multi-process applications during a postcopy
migration. When a process or a thread on the guest oper-
ating system tries to access a not-yet-transferred memory
page, a page fault happens in the hypervisor level, and trig-
gers VM Exit. The physical CPU executing the VM quits
the VM context and returns to the context of the hypervi-
sor. Without the proposed mechanism, the guest operating
system never notices this page fault, being frozen until the
hypervisor makes the data of the page ready. On the other
hand, with the proposed mechanism, the hypervisor injects
a special interrupt into the guest operating system just after
the page fault, and promptly returns to the guest operating
system. The special interrupt requests the guest kernel to
remove the current thread from the RUN queue and sched-
ule CPU time among other threads. It should be noted that
Linux Kernel 2.6.38 or later natively supports the proposed
mechanism. These kernels work as a guest operating sys-
tem of the proposed mechanism without any modification to
them.

Section 2 explains the overview of postcopy migration,
and Sect. 3 presents the proposed mechanism. Section 4
shows results of evaluation experiments. Section 5 describes
related work. Finally, Sect. 6 concludes this paper. †

2. Overview of Postcopy Live Migration

Figure 1 illustrates the overview of our postcopy live mi-
gration mechanism for Qemu/KVM (Yabusame). This fig-
ure does not include the component of the proposed mecha-
nism in this paper. Since the first prototype was presented in

†This paper substantially extends our preliminary work pre-
sented at a symposium (ComSys2012) [4]. Especially, we have
improved the evaluation section with the latest, performance-
optimized implementation of the proposed mechanism. Bugs that
affected performance have been fixed. Experiments with various
applications have been conducted.

[5], it has been carefully redesigned to be fully compatible
with other features of Qemu/KVM. The recent design sup-
ports not only the KVM-accelerated mode but also the TCG
(Tiny Code Generator) mode of Qemu. The most parts of
the postcopy mechanism are implemented by using the ex-
isting functions of the precopy mechanism. The extension
to the existing code is minimized and reliable enough to be
used in production-level environments.

In Qemu/KVM, a VM corresponds to a Qemu process
on the host operating system, and the Qemu process is com-
posed of several native threads. A VCPU thread corresponds
to a virtual CPU of a VM. The number of VCPU threads of
a VM is the same as that of virtual CPUs of the VM. A
VCPU thread executes the code of the guest operating sys-
tem. The main thread provides emulation of various devices
such as a network interface. Because the disk I/O of Qemu
is performed through a mechanism similar to POSIX Asyn-
chronous I/O, a Qemu process sporadically invokes worker
threads dedicated to this mechanism. At the inside of the
kernel of the host operating system, the KVM driver works
for controlling virtualization mechanisms of physical CPUs
such as shadow page tables of VMs.

In the case of postcopy migration, a device driver trap-
ping memory access, UMEM, is loaded into the host op-
erating system at destination. The Qemu process creates
the RAM of the VM with anonymous memory pages pro-
vided by UMEM. The Qemu process invokes a child process
(UMEM daemon) transferring the data of memory pages.

The postcopy live migration of a VM works as illus-
trated in Fig. 1: (a) The VMM stops the VM at its source
PM. (b) The VMM transfers the state of VCPU and devices
to the destination PM. (c) The VMM restarts the VM at the
destination PM. Now, the VM is running on the destination.
When the VM accesses a not-yet-transferred memory page,
the VMM transfers the data of the memory page from the
source PM. In addition, the VMM also transfers the rest of
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remaining memory pages in the background. After transfer-
ring all the memory pages, the VMM releases the data of
memory pages on the source PM.

Steps 0-6 in Fig. 1 explain the detail of the transfer
mechanism. Just after the VM restarts at the destination
PM, memory pages are mapped to the destination Qemu
process, but are not yet actually allocated. When any one
of the native threads comprising the Qemu process accesses
each memory page at the first time, a page fault happens
at the destination PM. If this page fault is triggered by a
VCPU thread being executing the context of the guest op-
erating system, the VCPU thread promptly exits from the
guest OS (i.e., VM Exit). In the case of a VCPU thread or
any other threads, the execution of the thread causing the
page fault is blocked on the host operating system, and the
memory management system of the host operating system
kernel calls the page fault handler of the UMEM driver.

The page fault handler of the UMEM driver checks
whether the content of the memory page is already trans-
ferred. If the content is already transferred, the page fault
handler returns promptly. The host operating system un-
blocks the execution of the thread. In the case that a VCPU
thread being executing the guest context has caused the page
fault, the VCPU thread restarts the execution of the guest
context (i.e., VM Entry). In any case, the thread causing
the page fault is temporally stopped in a very short period
of time, which will not affect VM performance noticeably.
This paper refers such page fault as minor fault.

On the other hand, if the content of the page is not yet
transferred, the page fault handler requests the UMEM dae-
mon in the userland to transfer it. The UMEM daemon sends
the page number of the page to the source Qemu process.
The source QEMU process returns the content of the page
to the UMEM daemon. The UMEM driver saves the re-
ceived page data and marks the page as transferred. Then,
the UMEM driver finishes the page fault handler, unblock-
ing the execution of the Qemu thread. This paper refers such
page fault as major fault.

Major faults potentially cause noticeable performance
degradation of a migrating VM. In comparison to a minor
fault, a major fault involves data transfer between the source
and destination, which means that the Qemu thread caus-
ing the page fault needs to be blocked in a long period of
time. For example, while a minor fault costs only several
microseconds in the environment of our experiments, a ma-
jor fault costs several hundred microseconds beyond a GbE
link.

3. Postcopy Live Migration with Guest-Cooperative
Page Fault

We propose an advanced postcopy migration technique
that reduces performance degradation during the postcopy
phase. Instead of fully hiding miss hits from the guest oper-
ating system, the proposed mechanism implements a guest-
cooperative postcopy mechanism. Upon the miss hit of a
memory page, the hypervisor injects a special interrupt to

the VM, which notifies the guest operating system that the
accessed page is not ready. The guest operating system
reschedules the process that has accessed the page, and con-
tinues other processes. The proposed mechanism is intended
to effectively work for multi-threaded/process applications
(i.e., web servers), which can been seen everywhere in cloud
data centers.

The proposed mechanism is implemented by extend-
ing the Asynchronous Page Fault (APF) feature of KVM.
APF is originally designed to alleviate performance drop
when the guest operating system accesses a memory page
that has been swapped out to a storage device on the host
operating system level. Without APF, the guest operating
system needs to be completely stopped until the host op-
erating system swaps in the data of the memory page. On
other hand, APF allows the guest operating system to keep
running without disruption. In parallel, the host operating
system is swapping in the data. In the proposed mecha-
nism, our UMEM driver implements a special page fault
handler to support APF. This allows continuing the execu-
tion of the guest operating system while retrieving the data
of a fault page from the source Qemu process. The recent
KVM drivers and Linux kernels with the APF feature sup-
port the proposed mechanism without any modification to
them.

Figure 2 illustrates the overview of the proposed mech-
anism. It works only at the destination side. In the first
phase, the guest operating system is notified of a miss hit.

1. The guest operating system accesses a memory page
for the first time.

2. A page fault happens at the hardware level of the PM,
resulting in an exit from the VM context.

3. The KVM driver tries to map the fault page to the ad-
dress space of the Qemu process, which is to be per-
formed in a non-blocking basis. The memory manage-
ment system of the host operating system kernel calls
the page fault handler of the UMEM driver with the
non-blocking flag.

4. The UMEM driver scans the bitmap that records trans-
ferred memory pages. If the fault page is found on
it, the page fault handler promptly returns with suc-
cess, and then the execution of the guest context is
resumed. Otherwise, this case is a major fault. The
UMEM driver requests the UMEM daemon to transfer
the page from the source, and follows the below steps.

5. The UMEM driver finishes the page fault handler with
the ”Page Not Present” flag.

6. The memory management system of the host kernel in-
vokes a kernel thread (i.e., workqueue) dedicated for
deferred page fault handling.

7. The KVM driver injects a special interrupt to the VM,
notifying the guest operating system that the page is
not ready.

8. The interrupt handler of the guest kernel suspends the
execution of the current process (that has triggered the
major fault), and remove it from the run queue of the
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Fig. 2 Overview of the proposed mechanism.

process scheduler. Then, the guest kernel executes
other processes in the run queue if available.

These steps are performed in a non-blocking basis. They are
completed in several microseconds in our test environments.

In the second phase, the proposed mechanism waits for
the data transfer of the fault page, and then notifies the guest
kernel of the completion.

1. The workqueue of deferred page fault tries to map the
fault page to the address space of the Qemu process in
a blocking basis this time. The memory management
system calls the page fault handler of the UMEM driver
without the non-blocking flag. This is the normal be-
havior of a page fault handler in the Linux kernel.

2. The UMEM driver scans the bitmap again. There is
the possibility that the data of the memory page has
been transferred since the previous scan. If the faulted
page is found, the mechanism jumps to Step 5. Other-
wise, the UMEM driver requests the UMEM daemon
to transfer the page from the source.

3. The UMEM daemon receives the content of the mem-
ory page from the source.

4. The UMEM daemon writes the page data to the VM
memory, and then marks the page as transferred in the
bitmap of the UMEM driver.

5. The UMEM handler finishes the page fault handler.
6. The workqueue notifies the KVM driver of the comple-

tion of the page fault.
7. (Case A) If the VCPU thread is running in the guest

context, the notification to the guest is performed asyn-
chronously. After a VM Exit event happens for any
reason, goes to the next step. (Case B) If the VCPU
thread already exited from the VM (e.g., the VCPU ex-
ecuted HLT), the KVM driver unblocks the execution
of the VCPU.

8. The KVM driver injects an interrupt to the VM upon
VM Entry, notifying it that the page is ready.

9. The interrupt handler of the guest kernel resumes the
execution of the fault process. It moves the fault pro-
cess to the run queue.

In the second phase, the call of the page fault handler is per-
formed in a blocking basis, because the handler likely waits
for the data transfer of the fault page. Thus, the workqueue
thread is used here instead of the VCPU thread, so that the
execution of the VCPU is not prevented.

The proposed mechanism is targeted on the case that a
major fault happens when a VCPU thread is executing the
guest context (i.e., during the VM Entry state). It is not tar-
geted on the case that a major fault happens when a VCPU
thread is executing the host context (i.e., during the VM Exit
state). For example, a VCPU thread accesses the page table
of a guest operating system for the emulation of APIC. The
page used for the page table is not handled by the proposed
mechanism, because the emulation is done in the host con-
text. Major faults caused by the other threads than VCPU
threads are not also handled by the proposed mechanism. In
these cases, the execution of the thread is blocked until the
content of the page is transferred from the source.

A VM with multiple VCPUs is composed of the same
number of VCPU threads. The proposed mechanism works
for each VCPU thread, respectively. There is the case that
a VCPU thread triggers a major fault for the same memory
page again, which is awaiting the completion of data trans-
fer in the workqueue. This paper refers this case as double
fault. Upon a double fault, the page fault is solved by the
normal way; the CPU thread is blocked until the fault page
is transferred. Supposedly, there is less possibility that the
guest operating system continues to run without the fault
page.

We have implemented the above mechanism for the lat-
est Qemu/KVM and Linux Kernel. We are improving it ac-
cording to feedback from users. It has been publicly avail-
able under the open source license since June 2012.
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4. Evaluation

We conducted experiments to evaluate the proposed mecha-
nism. First, we used a simple multi-thread program to care-
fully observe how the mechanism works, and then set up a
web server system and a database server system to see its
performance in the reality. Figure 3 illustrates the overview
of our system setup. Host A is a source PM where a VM
is firstly launched, and Host B is a destination PM which
the VM is migrated to. A 10GbE link is used for migration
traffic. Network latency between the PMs is approximately
30us by the ping program. Host C serves a storage server
sharing the virtual disk of the VM with the PMs. Host C
also runs a web server benchmark program or a database
benchmark program. Both the PMs are equipped with 2 In-
tel Xeon E5620 processors, which are 8 CPU cores in total
per PM, and 24 GBytes memory. Intel EPT (Extended Page
Table), i.e., the hardware feature assisting address transla-
tion for VMs, is enabled. We disabled the C-state and P-
state modes of the PMs in their BIOS and kernel config-
urations. This ensures that results of experiments are not
affected by the dynamic power control mechanisms.

Since experiments were focused on performance
degradation due to major faults, our postcopy migration
mechanism was configured to use only the on-demand mem-
ory transfer of faulted memory pages. The background
transfer of remaining memory pages was disabled during
measurement periods. Because there is a possibility that the
bursty background transfer suppresses the on-demand trans-
fer and degrades system performance, we intend that in real
use-cases the background transfer will be invoked after the
network traffic of the on-demand memory transfer becomes
sufficiently small.

Experiments were performed with 4KB pages. In the
network of experiments, the minimum latency of a page
transfer transaction was approximately 100us, which was
measured on the UMEM daemon during a live migration of
an idle VM. It is the period of time between Step 3 of Fig. 1
(i.e., the time when the UMEM daemon sends the 64bit off-
set number of a faulted page) and Step 4 (i.e., the time when
the UMEM daemon receives the 4KB data of the page).

4.1 System Trace

We developed a simple multi-thread program running on the
guest operating system of a migrating VM. In this experi-
ment, a VM has one VCPU and 1 GBytes RAM. It creates 4

Fig. 3 System setup for experiments

native threads, and each thread allocates a 200 MB memory
space.

At the same moment that a postcopy live migration
starts, each thread starts reading its memory space sequen-
tially from the first byte to the last, respectively. The elapsed
time until the last byte is measured in each thread, respec-
tively. With the proposed mechanism enabled, the elapsed
time was approximately 9.8 seconds in each thread. Oth-
erwise, it was approximately 17.6 seconds. The proposed
mechanism contributed to reduce the elapsed time approxi-
mately by 44 %. In the situation where serious major faults
are inevitable, the proposed mechanism allowed the VM
to overlap the sequential memory reads with memory data
transfer of major faults. The performance impact by post-
copy major faults was successfully alleviated.

To examine how the proposed mechanism works in de-
tail, the same experiment was performed again with System-
Tap [6] enabled. We wrote a system tap script that monitors
guest/host in-kernel events related to the proposed mecha-
nism. It records VM Entry/Exit and the start and end of the
page fault handler of the UMEM driver on the host operat-
ing system, and the call of the APF interrupt handler and the
schedule of processes on the guest operating system. Figure
4 and 5 show the time sequence of these events regarding
the major fault of a memory page (page frame 0x180d in the
guest). In the figures, the last column points to correspond-
ing steps in Fig. 2. In Fig. 4, at the host-level clock time of
198 microseconds, a VM Exit event happened due to page
fault. Then, the page fault handler of the UMEM driver was
called by the host operating system. At 209 microseconds,
the page fault handler returned with the need-retry flag,
which means that the page was not found in the already-
transferred data. In Fig. 5, at the guest-level clock time 634
microseconds the guest operating system was notified of the

Fig. 4 The host-level behavior of the proposed mechanism when han-
dling the major fault of a memory page (page frame 0x180d in the guest
view). The first column is the time clock in micro seconds. gfn is a page
number in the guest. The last column points to the corresponding step in
Fig. 2.

Fig. 5 The guest-level behavior of the proposed mechanism when han-
dling the major fault of Fig. 4. Note that the time clock of the guest oper-
ating system is not accurately synchronized with that of the host operating
system. tid is a kernel thread id.
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Fig. 6 The web server benchmark with HTTP connections. 128 server processes. (a) and (b) show the
response latency time of each request with/without the proposed mechanism, respectively. The black
Bezier line shows the trend of Y-axis values. (c) and (d) show the percentage of the VMX non-root
mode during the experiments.

major fault of the memory page. It promptly rescheduled
the current thread (thread id 4884) that had caused the fault,
and started executing another thread (thread id 4885). In
this way, the guest operating system kept scheduling other
threads that did not access the memory page. At the host-
level clock time of 405 microseconds, the memory page was
transferred from the source and the page fault handler re-
turned with success. This information was injected to the
VM at 504 microseconds. At the guest-level clock time of
900 microseconds, the guest operating system was notified
of it, and put the fault thread 4855 to the run queue. After 48
microseconds, the process scheduler actually assigned CPU
to the thread.

Through the above experiment, we have confirmed that
the proposed mechanism can continue executing the guest
operating system in parallel with the retrieval of fault pages.
By analyzing the output of the SystemTap script, we found
that when the proposed mechanism was enabled, the VCPU
thread ran in the context of the guest operating system in
55 % of actual time. Without the proposed mechanism, the
VCPU thread ran the guest only in 38 %. The proposed
mechanism alleviated performance degradation caused by
major faults of postcopy migration.

4.2 Application Benchmarks

We evaluated system performance through application
benchmarks. The proposed system will contribute to reduc-
ing performance degradation of multi-threaded (or multi-
process) web server programs.

4.2.1 Apache Web Server

We set up an Apache web server program on the guest
operating system, and measured its performance be-
fore/during/after a live migration. In this experiment, a VM
has one VCPU and 16 GBytes RAM. The web server pro-
gram served 10 GBytes web contents to clients. The file
size of each content was 1 MBytes, and there were 10000
files in total. The Apache server was configured to the pre-
fork mode, in which an HTTP/HTTPS session is handled by

each server process. On Host C, we launched a web server
benchmark program, Siege [7]. It was configured to create
128 client threads. Each client thread continuously accessed
random web contents. The Apache server was also config-
ured to launch up to 128 server processes. After the network
throughput of the web server benchmark became stable, we
started measurement. It suggests that the guest operating
system had cached most web contents in the page cache of
the kernel.

Figure 6 shows the results of the web server benchmark
with HTTP connections. At 50 seconds, the VM was mi-
grated from the source PM to the destination. As shown in
Fig. 6(a) and 6(b), the response latency time of a request in-
creased due to major faults after the execution host of the
VM was switched. In the case with the proposed mech-
anism, the response latency time increased approximately
from 1 second to 2 seconds. Otherwise, it increased to
5 seconds or larger. It is clear that the proposed mech-
anism successfully reduced performance loss in the web
server system. Figure 6(c) and 6(d) show the percentage
of the VMX non-root mode, i.e., the period of time in which
the VCPU thread is executing the guest-OS context. Just
after the live migration, the proposed mechanism allowed
the VCPU thread to execute the guest-OS context approx-
imately at the percentages of 55-60%, which are (slightly
smaller but) very close to that of the normal state. With-
out the proposed mechanism, a large performance drop was
observed just after the migration, and then the percentage
did not promptly recover. In comparison to the case of the
proposed mechanism, the VCPU thread could not efficiently
run the guest-OS context.

We also conducted the same experiment with HTTPS
connections. As shown in Fig. 9, the proposed mechanism
reduced performance degradation after the execution host
of the VM was switched. It should be noted that, because
the guest operating system consumed CPU cycles for data
encryption and decryption, the percentage of the VMX non-
root mode was higher than that of the HTTP benchmark.

As shown in the above experiments, the proposed
mechanism will efficiently work for a server program cre-
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ating many concurrent processes. If the number of con-
current processes is small, there will be less possibility that
the proposed mechanism hides network latencies. To con-
firm this point, we changed the configuration of the Apache
server, reducing the number of server processes to 16 or 4.
Figure 7 and 8 show the results of the HTTP benchmark.
In the case of 16 server processes, we can observe that the
proposed mechanism clearly contributed to reducing perfor-
mance loss. The difference between the results with/without
the proposed mechanism was smaller than that of the case
of 128 server processes. In the case of 4 server processes,
the difference between the results was still observable but
very subtle. It should be noted that in the default setting
of the pre-fork mode of Apache-2.2, the maximum number
of server processes being concurrently created is 256. This
value will be sufficient for the proposed mechanism to effi-
ciently work.

4.2.2 PostgreSQL Database Server

Next, we set up a PostgreSQL database server on the guest
operating system and created a database file of 2 GBytes.
On Host C, we launched a database benchmark program, pg-
bench. It was configured to create 8 parallel client sessions.

Fig. 7 The web server benchmark with HTTP connections. 16 server
processes. (a) and (b) show the response latency time of each request
with/without the proposed mechanism, respectively. The black Bezier line
shows the trend of Y-axis values.

Fig. 9 The web server benchmark with HTTPS connections. 128 server processes. (a) and (b) show
the response latency time of each request with/without the proposed mechanism, respectively. The black
Bezier line shows the trend of Y-axis values. (c) and (d) show the percentage of the VMX non-root mode
during the experiments.

Each client session continuously generated query requests
for a randomly-selected row in the database. During the
benchmark, the database server on the guest operating sys-
tem kept executing 8 server processes. After the throughput
of the benchmark became stable, we started measurement.
It suggests that the guest operating system had cached most
blocks of the database file in the page cache of the kernel.

As shown in Fig. 10, the proposed mechanism greatly
contributed to reducing performance penalty of major faults.
Although there was a temporal increase of the request re-
sponse latency just after the execution host of the VM was
switched, the latency promptly became back small values.
Most requests finished in less than 2 seconds. On the other
hand, without the proposed mechanism, a substantial num-
ber of requests finished in 10-100 seconds. This large per-
formance degradation remained unsolved until the end of
the benchmark. Figure 10(c) and 10(d) explain that with-
out the proposed mechanism the VCPU thread executed the
guest-OS context only in 10-20% of the elapsed time. The
execution efficiency of the VM became drastically worse
than the case with the proposed mechanism (i.e., 80-90%).

We observed that after the execution host was switched,
some requests finished in a shorter period of time than that
of the normal state. In Fig. 10(a) and 10(b), after 50 sec-

Fig. 8 The web server benchmark with HTTP connections. 4 server
processes. (a) and (b) show the response latency time of each request
with/without the proposed mechanism, respectively. The black Bezier line
shows the trend of Y-axis values.
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Fig. 10 The database server benchmark. (a) and (b) show the response latency time of each request
with/without the proposed mechanism, respectively. The black Bezier line shows the trend of Y-axis
values. (c) and (d) show the percentage of the VMX non-root mode during the experiments. The Y axis
in (a) and (b) uses logarithmic scale.

onds, there are noticeable scattered dots near 0.5 seconds
of the response latency time. In the normal state, the task
scheduler of the guest kernel fairly assigns CPU time to each
active process. However, when postcopy live migration is
invoked, the task scheduler cannot guarantee fair CPU time.
An active process that has caused a major fault needs to tem-
porarily pause until the target page is transferred. Another
active process that does not cause major faults can obtain
more CPU time than usual.

In the experiments with the web server benchmark,
even if the proposed mechanism was not used, serious per-
formance degradation continued only during 10-15 seconds
after the execution host of the VM was switched. For ex-
ample, in Fig. 6(d), the period of time in the VMX non-root
mode reached only 20% or less between 50 and 60 seconds
but then increased approximately to 40%. It is considered
that, since (not all but) the major part of necessary memory
pages was transferred during this period of time, system per-
formance got recovered to a degree. In the experiments with
the database server benchmark, however, if the proposed
mechanism was not used, serious performance degradation
continued. The time in the VMX non-root mode kept being
only at 10% approximately. In this case, the major part of
necessary memory pages was not yet transferred. For a situ-
ation where major faults continuously happen, postcopy live
migration without the proposed mechanism will suffer large
performance penalty. Our proposed mechanism can virtu-
ally hide major faults, so that postcopy live migration will
efficiently work with small performance overhead.

5. Related Work

It is well known that there is a possibility that memory pages
of a VM are swapped out to external storage at the host
operating system level, which likely results in intense per-
formance degradation of the VM. This problem has been
called double paging [8]. IBM z/VM has the feature that in-
jects a special interrupt (Pseudo-Page-Fault Interruption) to
a VM. The interrupt notifies the VM that a memory page
is swapped out at the hypervisor level. It enables the guest

operating system to continue running even when accessing
a swapped-out memory page. KVM recently implemented
a similar mechanism called Asynchronous Page Fault. The
proposed mechanism in this paper has applied this technique
to the page fault handling of postcopy live migration. As far
as we know, this is the first attempt to use the technique for
performance improvement of live migration. This paper has
proved that postcopy migration can also take great advan-
tage of asynchronized page faults.

There are other techniques improving performance of
postcopy migration. SnowFlock [9] is a mechanism to
rapidly clone a VM to other PMs, which is based on the
same technique as postcopy live migration. In order to re-
duce performance impact, the VM clone mechanism cooper-
ates with the memory management mechanism of the guest
operating system. It does not transfer memory pages newly
allocated after the execution of the VM is switched to desti-
nation. The existing content of these memory pages are not
necessary and will be overwritten soon by the guest operat-
ing system. A following study [10] proposed a mechanism
that analyzes the memory structure of the guest operating
system, such as page tables, and transfer relevant memory
pages at once, so as to reduce major faults. A study [11]
presented a postcopy migration mechanism using a special
swap device in the guest operating system. It reduces ma-
jor faults by optimizing the order of memory pages to be
transferred. Because a region of memory pages around the
most recent fault page is regarded as a hot spot for the cur-
rent workload, it transfers memory pages in order with the
proximity to the hot spot.

6. Conclusion

In this paper, we propose a performance improvement tech-
nique of postcopy live migration, which is based on pseudo-
virtualization of page faults. When the guest operating sys-
tem accesses a not-yet-transferred memory page, the pro-
posed technique allows the guest kernel to defer the execu-
tion of the current process until the page data is transferred.
In parallel with the page transfer, the guest kernel can yield
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VCPU to other active processes. We implemented the pro-
posed technique in our postcopy migration mechanism for
Qemu/KVM. Through experiments, we confirmed that our
technique successfully alleviated performance degradation
of postcopy migration for web server and database bench-
marks.
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